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Comment on ‘‘Ehrenfest times for classically chaotic systems’’
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In a recent Rapid Communication@P. G. Silvestrov and C. W. J. Beenakker, Phys. Rev. E65, 035208~R!
~2002!#, the authors, Silvestrov and Beenakker, introduce a way to lengthen the Ehrenfest timet for fully
chaotic systems. We disagree with several statements made in their paper, and address the following points
essential to their conclusions:~1! it is not true that all semiclassical approximations for chaotic systems fail at
a so-called ‘‘log time’’ t}2 ln(\), differing only by a numerical coefficient; and~2! the limitation of the
semiclassical approximation as expressed in the authors’ Eq.~8! is not limited by their argument leading to Eq.
~12!.
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It is important to distinguish between the corresponde
of quantum and classical dynamical propagations, and
validity of semiclassical approximations. If one takes t
Ehrenfest timet to be the upper limit for which a quantum
mechanical wave packet is described by solving class
equations of motion without invoking a semiclassical co
struction of the wave packet, then the Ehrenfest time
creases logarithmically slowly for chaotic systems ast
}l21ln(S/\) @2,3#; there is no controversy on this point. I
this expressionl is sum of the positive Lyapunov exponent
and S is some characteristic classical action such as tha
the shortest periodic orbit. If, instead, one definest as the
time scale beyond which the time-dependent WKB appro
mation @4# no longer faithfully reproduces the quantu
propagation of a wave packet in full detail, thent is not a
so-called ‘‘log time,’’ but is proportional to inverse algebra
powers of\ @5–7#.

The precise exponent in the breakdown time scale
been shown to depend on a few basic features of the cha
dynamical system being considered. We mention work
three separate paradigms of chaos. It was shown in the
dium billiard @5# that t}\21/2lnS/\ ~essentially\21/2). The
\21/2 behavior was linked to the fact that the stable a
unstable manifolds associated with trajectories in the stad
have discontinuities in their slopes where they fold ov
upon themselves. The lnS/\ part of the expression is due t
the ‘‘stickiness’’ of phase space in the neighborhood of
marginally stable bouncing ball trajectories. In contrast
general dynamical system possessing stable and uns
manifolds that are continuous in their slopes givest}\21/3

@6#; this was illustrated with the kicked rotor. A third ex
ample that has been studied extensively is the quantum
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ers map. There it was shown that for some quantities,
breakdown time scale could be as great ast}\21 @7#, al-
though\21/2 was typical@8#.

Note that the semiclassical approximations in Refs.@5–8#
involve no uniformizations or caustic corrections. They a
in fact, either exactly or poor man’s versions of the stand
WKB method, and developed specifically for chaotic sy
tems. For wave packets, the standard time-dependent W
method involves sets of complex trajectories@9#. Neverthe-
less, in the above cited work ont, no classically nonallowed
processes are taken into account. One essential ingre
relied upon in these works, the ‘‘area-\ rule’’ is contained in
Ref. @3#. This rule is in contradiction with the argument o
Ref. @1# leading to Eq.~12!, which contains the relation
\7/62c!1, c being the coefficient of proportionality in th
log time scale relation. The consequences of the area-\ rule
carefully considered in conjunction with the geometric
properties of evolving stable and unstable manifolds giv
precise formulation of the semiclassical breakdown due
caustics and the resultant algebraic time scales@5–7#. The
crucial point is that thedistance between local classica
manifolds~the criterion used by Silvestrov and Beenakker! is
actually of no importance—what matters is theareaenclosed
by following the manifold from one branch to the next in
given locality. To miss this point unfortunately leads to
qualitatively different and incorrect result.

Finally, we do agree with the authors that there should
important or morphological distinctions in the nature
evolving wave packets as they surpass each relevant
scale. Examples include interference phenomena necess
arising beyond the log time, and localization effects som
times supressing classical diffusion beyond algebraic t
scales@10#.
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